

Valarpy

	Setup

	Usage

	Notes about tables

	API Reference

Python code to talk to Valar [https://github.com/dmyersturnbull/valar].
There is more documentation available in that readme.

[image: Version status] [https://pypi.org/project/valarpy/] [image: License] [https://opensource.org/licenses/Apache-2.0] [image: PyPI - Python Version] [https://pypi.org/project/valarpy/] [image: GitHub release] [https://github.com/dmyersturnbull/valarpy/releases] [image: Latest version on PyPi] [https://pypi.org/project/valarpy/]
[image: Documentation status] [https://valarpy.readthedocs.io/en/stable/] [image: Build & test] [https://github.com/dmyersturnbull/valarpy/actions]

Setup

First, install valarpy with just pip install valarpy.
Note that if you are using sauronlab [https://github.com/dmyersturnbull/sauronlab], you
only need to install sauronlab.

Tunnel into Valinor

Valarpy connects to Valar through an SSH tunnel; the database is not
accessible remotely. There are two modes of connection: Valarpy can
either use an existing SSH tunnel or create its own.

Replacing 53419 with a number of your choosing, The port can’t be
anything. It needs to be between 1025 and 65535, and I recommend
49152–65535.

create the tunnel using:

ssh -L 53419:localhost:3306 valinor.ucsf.edu

Note that after running it your shell is now on Valinor.

You will need to leave this tunnel open while connecting to Valar. As
long the terminal window connection is open, you can access valar
through your notebooks.

You can of course alias in your ~/.commonrc. Adding these lines
will provide a valinor-tunnel alias:

export valinor_tunnel_port=53419
alias valinor-tunnel='ssh -L ${valinor_tunnel_port}:localhost:3306 valinor.ucsf.edu'

Connect to Valar

You will connect to Valar via that tunnel.
An example configuration file is provided in the readme. I recommend
downloading it to $HOME/.sauronlab/connection.json. You’ll need
to fill in the username and password for the database connection.
Although the database users are provided for safety (no write access by default)
rather than security, do not put a username and/or password anywhere that’s web-accessible
(including GitHub).

Usage

Valarpy is an ORM [https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping]
for Valar based on Peewee [https://github.com/coleifer/peewee].
Here is how to initiate a new (read-only) connection.

import valarpy
with valarpy.opened() as model:
 print(list(model.Refs.select()))

Write access

If your database username provides privileges for INSERT, UPDATE, or DELETE,
you can run those queries via valarpy.
Because the vast majority of access does not require modifying the database –
and mistakes can be catastrophic and require reloading from a nightly backup –
you must call enable_write().

Warning

Although valarpy is mostly thread-safe when using atomic transactions,
it uses a global write-access flag.
That means that if you call enable_write (see below), all code can write,
even if it called valarpy.opened() separately.

You should use transactions [https://mariadb.com/kb/en/start-transaction/]
and/or savepoints [https://mariadb.com/kb/en/savepoint/].
In the following code, an atomic transaction is started, and the transaction is committed
when the context manager closes. If an exception is raised within the transaction block,
it will be automatically rolled back on exit.

import valarpy
with valarpy.opened() as model:
 model.conn.backend.enable_write()
 with model.atomic():
 ref = Refs.fetch(1)
 ref.name = "modified-name"
 ref.save()
 # transaction is now committed

If you nest atomic() calls, the nested call(s) will create savepoints rather than initiate new transactions.
If a transaction fails in the nested block, it will be rolled back to the savepoint:

import valarpy
with valarpy.opened() as model:
 # enable write access
 model.conn.backend.enable_write()
 # This starts a transaction:
 with model.conn.atomic():
 ref = Refs.fetch(1)
 ref.name = "improved-name"
 ref.version = "version 2"
 try:
 # This just creates a savepoint
 with model.conn.atomic():
 ref.name = "name modified again"
 ref.save()
 raise ValueError("Fail!")
 # savepoint exits
 except:
 print("Rolling back to checkpoint")
 # prints "name=improved-name, version="version 2"
 print(f"name={ref.name}, version={ref.version}")
 # transaction is now committed

You would never nest atomic calls in a single function, but you might call a function that also
calls atomic.
There is a method analogous to atomic called rolling_back. This will roll back to the transaction
or savepoint when the block closes, whether or not an exception was called. This is especially useful when
writing tests.
Finally, model.atomic() and model.rolling_back() both yield a Transaction object that has several methods,
including .commit() and .rollback(). In general, you would not want to call these directly, but you can.

Notes about tables

Assay frames and features (such as MI) are stored as MySQL binary
blobs.

Each frame in assay_frames is represented as a single big-endian
unsigned byte. To convert back, use utils.blob_to_byte_array(blob),
where blob is the Python bytes object returned directly from the
database.

Each value in well_features (each value is a frame for features like
MI) is represented as 4 consecutive bytes that constitute a single
big-endian unsigned float (IEEE 754 binary32). Use
utils.blob_to_float_array(blob) to convert back.

There shouldn’t be a need to insert these data from Python, so there’s
no way to convert in the forwards direction.

API Reference

This page contains auto-generated API reference documentation 1.

	valarpy

	1

	Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

valarpy

Project metadata and convenience functions.

Package Contents

	
valarpy.new_model()

	Shorthand for importing model.
You should have a connection open.

	Returns

	The model module

	
valarpy.opened(config: Union[None, str, pathlib.Path, List[Union[str, pathlib.Path, None]], Mapping[str, Union[str, int]]] = None)

	Context manager. Opens a connection and returns the model.
Closes the connection when the generator exits.

	Parameters

	config – Passed to Valar.__init__

	Yields

	The model module, with an attached .conn of type Valar

	
valarpy.valarpy_info() → Generator[str, None, None]

	Gets lines describing valarpy metadata and database row counts.
Useful for verifying that the schema matches the valarpy model,
and for printing info.

	Yields

	Lines of free text

	Raises

	InterfaceError – On some connection and schema mismatch errors

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 valarpy	

 	
 	
 valarpy.connection	

 	
 	
 valarpy.metamodel	

 	
 	
 valarpy.micromodels	

 	
 	
 valarpy.model	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Annotations (class in valarpy.model)

 	AssayParams (class in valarpy.model)

 	AssayPositions (class in valarpy.model)

 	
 	Assays (class in valarpy.model)

 	atomic() (valarpy.connection.Valar method)

 	AudioFiles (class in valarpy.model)

B

 	
 	BaseModel (class in valarpy.metamodel)

 	BatchAnnotations (class in valarpy.model)

 	Batches (class in valarpy.model)

 	
 	BatchLabels (class in valarpy.model)

 	Batteries (class in valarpy.model)

 	BinaryField (class in valarpy.metamodel)

C

 	
 	close() (valarpy.connection.Valar method)

 	CompoundLabels (class in valarpy.model)

 	
 	Compounds (class in valarpy.model)

 	ConfigFiles (class in valarpy.model)

 	ControlTypes (class in valarpy.model)

E

 	
 	EnumField (class in valarpy.metamodel)

 	
 	Experiments (class in valarpy.model)

 	ExperimentTags (class in valarpy.model)

F

 	
 	Features (class in valarpy.model)

 	fetch() (valarpy.metamodel.BaseModel class method)

 	fetch_all() (valarpy.metamodel.BaseModel class method)

 	
 	fetch_all_or_none() (valarpy.metamodel.BaseModel class method)

 	fetch_or_none() (valarpy.metamodel.BaseModel class method)

 	fetch_to_query() (valarpy.metamodel.BaseModel class method)

 	find_extant_path() (valarpy.connection.Valar class method)

G

 	
 	GeneticVariants (class in valarpy.model)

 	get_data() (valarpy.metamodel.BaseModel method)

 	get_desc() (valarpy.metamodel.BaseModel class method)

 	
 	get_desc_list() (valarpy.metamodel.BaseModel class method)

 	get_indexing_cols() (valarpy.metamodel.BaseModel class method)

 	get_preferred_paths() (valarpy.connection.Valar class method)

 	get_schema() (valarpy.metamodel.BaseModel class method)

L

 	
 	list_where() (valarpy.metamodel.BaseModel class method)

 	
 	Locations (class in valarpy.model)

 	LogFiles (class in valarpy.model)

M

 	
 	MandosInfo (class in valarpy.model)

 	MandosObjectLinks (class in valarpy.model)

 	MandosObjects (class in valarpy.model)

 	MandosObjectTags (class in valarpy.model)

 	MandosPredicates (class in valarpy.model)

 	MandosRules (class in valarpy.model)

 	
 	MandosRuleTags (class in valarpy.model)

 	
 module

 	valarpy

 	valarpy.connection

 	valarpy.metamodel

 	valarpy.micromodels

 	valarpy.model

N

 	
 	new_model() (in module valarpy)

O

 	
 	open() (valarpy.connection.Valar method)

 	
 	opened() (in module valarpy)

P

 	
 	Plates (class in valarpy.model)

 	PlateTypes (class in valarpy.model)

 	
 	Projects (class in valarpy.model)

 	ProjectTypes (class in valarpy.model)

R

 	
 	reconnect() (valarpy.connection.Valar method)

 	Refs (class in valarpy.model)

 	Rois (class in valarpy.model)

 	
 	rolling_back() (valarpy.connection.Valar method)

 	Runs (class in valarpy.model)

 	RunTags (class in valarpy.model)

S

 	
 	SauronConfigs (class in valarpy.model)

 	Saurons (class in valarpy.model)

 	SauronSettings (class in valarpy.model)

 	SensorData (class in valarpy.model)

 	Sensors (class in valarpy.model)

 	sstring (valarpy.metamodel.BaseModel property)

 	(valarpy.model.Refs property)

 	(valarpy.model.Rois property)

 	(valarpy.model.Stimuli property)

 	
 	Stimuli (class in valarpy.model)

 	StimulusFrames (class in valarpy.model)

 	SubmissionParams (class in valarpy.model)

 	SubmissionRecords (class in valarpy.model)

 	Submissions (class in valarpy.model)

 	Suppliers (class in valarpy.model)

T

 	
 	TableDescriptionFrame (class in valarpy.metamodel)

 	TemplateAssays (class in valarpy.model)

 	TemplatePlates (class in valarpy.model)

 	
 	TemplateStimulusFrames (class in valarpy.model)

 	TemplateTreatments (class in valarpy.model)

 	TemplateWells (class in valarpy.model)

 	TransferPlates (class in valarpy.model)

U

 	
 	UnknownField (class in valarpy.metamodel)

 	
 	UnsupportedOperationError

 	Users (class in valarpy.model)

V

 	
 	Valar (class in valarpy.connection)

 	ValarLookupError

 	
 valarpy

 	module

 	
 valarpy.connection

 	module

 	
 valarpy.metamodel

 	module

 	
 	
 valarpy.micromodels

 	module

 	
 valarpy.model

 	module

 	valarpy_info() (in module valarpy)

 	ValarTableTypeError

W

 	
 	WellFeatures (class in valarpy.model)

 	Wells (class in valarpy.model)

 	
 	WellTreatments (class in valarpy.model)

 	WriteNotEnabledError

valarpy.connection

Module Contents

	
class valarpy.connection.Valar(config: Union[None, str, pathlib.Path, List[Union[str, pathlib.Path, None]], Mapping[str, Union[str, int]]] = None)

	Global valarpy connection.

Constructor.

	Parameters

	config – The connection info, which must contain “database” and optionally parameters passed to peewee
If a dict, used as-is. If a path or str, attempts to read JSON from that path.
If a list of paths, strs, and Nones, reads from the first extant file found in the list.
If None, attempts to read JSON from the VALARPY_CONFIG environment variable, if set.

	Raises

	
	FileNotFoundError – If a path was supplied but does not point to a file

	TypeError – If the type was not recognized

	InterfaceError – On some connection issues

	
classmethod find_extant_path(*paths: Union[pathlib.Path, str, None]) → pathlib.Path

	Finds the first extant path in the list.
It is rare to need to call this directly.

	Parameters

	*paths – A list of file paths; values of None are skipped

	Returns

	The first Path that exists

	Raises

	FileNotFoundError – If the path found is not a file

	
classmethod get_preferred_paths() → List[pathlib.Path]

	Gets a list of preferred paths to look for config files, in order from highest-priority to least-priority.
Starts with the VALARPY_CONFIG environment variable, if it is set.

Returns: A list of Path instances

	
rolling_back() → Generator[peewee._transaction, None, None]

	Starts a transaction or savepoint that will be rolled back whether it fails or succeeds.
Useful for testing.

	Yields

	A peewee Transaction type; this should generally not be used

	
atomic() → Generator[peewee._transaction, None, None]

	Starts a transaction or savepoint that will be rolled back only on failure.

	Yields

	A peewee Transaction type; this should generally not be used

Examples

Here, both testing1 and testing2 are created atomically in a single transaction,
or neither are created on failure because the transaction is automatically rolled back.

@valar.atomic
def create_stuff():

Refs(name=”testing1”).save()
Refs(name=”testing2”).save()

	
reconnect(hard: bool = False) → None

	Closes and then opens the connection.
This may be useful for fixing connection issues.

	Parameters

	hard – Forcibly close and re-open connection

	
open() → None

	Opens the database connection.
This is already called by __enter__.

	
close() → None

	Closes the connection.
This is already called by __exit__.

valarpy.metamodel

Module Contents

	
class valarpy.metamodel.EnumField(max_length=255, *args, **kwargs)

	A MySQL ENUM field type.

	
class valarpy.metamodel.BinaryField(max_length=255, *args, **kwargs)

	A MySQL constant-width BINARY field type.

	
class valarpy.metamodel.UnknownField(*_, **__)

	A field type that was not recognized.

	
class valarpy.metamodel.TableDescriptionFrame(data=None, index: Axes | None = None, columns: Axes | None = None, dtype: Dtype | None = None, copy: bool | None = None)

	A Pandas DataFrame subclass that contains the columns:

- keys name (str)
- type (str)
- length (int or None)
- nullable (bool)
- choices (set or list)
- primary (bool)
- unique (bool)
- constraints (list of constraint objects)

	
class valarpy.metamodel.BaseModel(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
get_data() → Dict[str, Any]

	Gets a dict of all the fields.

Examples

Users.get(Users.id == 1).get_data() # {‘id’: 2, ‘username’: ‘john’, …}

	Returns

	The value of every field (column value)

	
property sstring → str

	Gets a short string of the ID. This can be overridden.

	Returns

	A string like s12

	
classmethod get_desc_list() → List[Dict[str, str]]

	Gets info about the columns as a list of dicts.

	Returns

	A list the columns in this table, where each is a dictionary of:

- keys name (str)
- type (str)
- nullable (bool)
- choices (set or list)
- primary (bool)
- unique (bool)
- constraints (list of constraint objects)

	Return type

	list of dicts

	
classmethod get_desc() → TableDescriptionFrame

	Gets a description of this table as a Pandas DataFrame.

Examples

Users.get_desc()

	Returns

	A TableDescriptionFrame (Pandas DataFrame subclass) of the columns:

- keys name (str)
- type (str)
- length (int or None)
- nullable (bool)
- choices (set or list)
- primary (bool)
- unique (bool)
- constraints (list of constraint objects)

	Return type

	A DataFrame

	
classmethod get_schema() → str

	Gets the approximate schema string.

	Returns

	A string that is approximately the text returned by the SQL SHOW CREATE TABLE tablename

	
classmethod list_where(*wheres: Sequence[peewee.Expression], **values: peewee.Mapping[str, Any])

	Runs a simple query and returns a list.

	Parameters

	
	wheres – List of Peewee WHERE expressions (like Users.id==1) to be joined by AND

	values – Explicit values (like id=1), also joined by AND

	Returns

	The table rows in a list

	
classmethod fetch_or_none(thing: Union[numbers.Integral, str, peewee.Model], like: bool = False, regex: bool = False) → Optional[peewee.Model]

	
	Gets the first (which is unique) match of the row by:
	
	instance of this class (just returns it)

	id columns (if thing is an integer-like type)

	
	any of this class’s unique string columns;
	more specifically, a column that is marked in SQL as both (VARCHAR, CHAR, or ENUM)
and UNIQUE

Also see fetch, which raises an error if then row was not found.

Examples

assuming John has ID 2
user = Users.fetch(‘john’)
print(user) # Users(2)

	Parameters

	
	thing – A string, int that

	like – Use a LIKE expression and wrap in % %

	regex – Treat thing as a regex pattern

	Returns

	The Peewee row instance that was found OR None if it does not exist

	Raises

	
	ValarTableTypeError – If thing is an instance of BaseModel of the wrong type (not this class)

	TypeError – If thing was not a str, int-like, or a BaseModel

	
classmethod fetch(thing: Union[numbers.Integral, str, peewee.Model], like: bool = False, regex: bool = False) → peewee.Model

	
	Gets the first (which is unique) match of the row by:
	
	instance of this class (just returns it)

	id columns (if thing is an integer-like type

	any of this class’s unique string columns;
more specifically, a column that is marked in SQL as both (VARCHAR, CHAR, or ENUM)
and UNIQUE

Also see fetch_or_none, which returns None if the row was not found.

Examples

assuming John has ID 2
user = Users.fetch(‘john’)
print(user) # Users(2)

	Parameters

	
	thing – A string, int that

	like – Use a LIKE expression and wrap in % %

	regex – Treat thing as a regex pattern

	Returns

	The matching Peewee row instance

	Raises

	
	ValarLookupError – If the row was not found

	ValarTableTypeError – If thing is an instance of BaseModel of the wrong type (not this class)

	TypeError – If thing was not a str, int-like, or a BaseModel

	
classmethod fetch_all(things: Iterable[Union[numbers.Integral, str, peewee.Model]]) → Sequence[peewee.Model]

	Fetches rows corresponding to things from their instances, IDs, or values from unique columns.
See fetch for full information.
Also see fetch_all_or_none for a similar function.
This method is preferrable to calling fetch repeatedly because it minimizes the number of queries.
Specifically, it will perform 0, 1, or 2 queries depending on the passed types:

- If only instances are passed, it just returns them (0 queries)
- If only IDs or only string values are passed, it performs 1 query
- If both IDs and string values are passed, it performs 2 queries

Examples

assuming John has ID 2 and Alex has user ID 14
users = Users.fetch_all([‘john’, 14, ‘john’, Users.get(Users.id == 2)])
print(users) # [Users(2), Users(14), Users(2), Users(2)]

	Returns

	A sequence of the rows found, in the same order as they were passed

	Raises

	
	ValarLookupError – If any of the elements of things was not found

	ValarTableTypeError – If an instance of a BaseModel of the wrong type (not this class) was passed

	TypeError – If the type of an element was otherwise invalid (not str, BaseModel, or int-like)

	
classmethod fetch_all_or_none(things: Iterable[Union[numbers.Integral, str, peewee.Model]], join_fn: Optional[peewee.Callable[[peewee.Expression], peewee.Expression]] = None) → Iterable[peewee.Model]

	Fetches rows corresponding to things from their instances, IDs, or values from unique columns.
See fetch for full information.
Also see fetch_all for a similar function.
This method is preferrable to calling fetch repeatedly because it minimizes the number of queries.
Specifically, it will perform 0, 1, or 2 queries depending on the passed types:

- If only instances are passed, it just returns them (0 queries)
- If only IDs or only string values are passed, it performs 1 query
- If both IDs and string values are passed, it performs 2 queries

Examples

assuming John has ID 2 and Alex has user ID 14
users = Users.fetch_all_or_none([‘john’, 14, ‘john’, Users.get(Users.id == 2)])
print(users) # [Users(2), Users(14), Users(2), Users(2)]

	Returns

	A sequence of the rows found, or None if they were not found; in the same order as they were passed

	Raises

	
	ValarTableTypeError – If an instance of a BaseModel of the wrong type (not this class) was passed

	TypeError – If the type of an element was otherwise invalid (not str, BaseModel, or int-like)

	
classmethod fetch_to_query(thing: Union[numbers.Integral, str, peewee.Model, peewee.Expression, Sequence[peewee.Expression], Sequence[Union[numbers.Integral, str, peewee.Model]]]) → Sequence[peewee.Expression]

	This method has limited but important reasons for being called.
See fetch, fetch_or_none, fetch_all, or fetch_all_or_none for more commonly used functions.
Returns a sequence of Peewee expressions corresponding to WHERE statements:

- If the instance is one of (int, str, or model), that the row is the one passed,
 matched by ID or unique column value as needed
- If the instance is a Peewee expression itself, that the expression matches

	Parameters

	thing – An int-type to be looked up by the id column, a str.
Looked up by:

- a unique column value
- a model instance
- an expression
- a list of expressions

	Returns

	A sequence of Peewee expressions to be joined with AND

	Raises

	
	ValarTableTypeError – If thing is an instance of BaseModel of the wrong type (not this class)

	TypeError – If thing was not a str, int-like, or a BaseModel instance

	
classmethod get_indexing_cols()

	Gets the list of unique columns

	Returns

	The columns, of course

valarpy.micromodels

Module Contents

	
exception valarpy.micromodels.ValarLookupError

	A value wasn’t found in Valar.

Initialize self. See help(type(self)) for accurate signature.

	
exception valarpy.micromodels.ValarTableTypeError

	A function was passed a row of a table, but from the wrong table.

Initialize self. See help(type(self)) for accurate signature.

	
exception valarpy.micromodels.UnsupportedOperationError

	This database operation is not supported.

Initialize self. See help(type(self)) for accurate signature.

	
exception valarpy.micromodels.WriteNotEnabledError

	Write access has not been enabled.

Initialize self. See help(type(self)) for accurate signature.

valarpy.model

Module Contents

	
class valarpy.model.Suppliers(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.PlateTypes(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Users(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Plates(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.TransferPlates(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Batteries(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.ProjectTypes(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Projects(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.TemplatePlates(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Experiments(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.ExperimentTags(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Saurons(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.SauronConfigs(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Submissions(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.ConfigFiles(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Runs(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.TemplateAssays(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Assays(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.ControlTypes(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.GeneticVariants(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Wells(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Annotations(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.AssayParams(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.AssayPositions(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.AudioFiles(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Locations(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Refs(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
property sstring → str

	Short string of the ID. This can be overridden.

	
class valarpy.model.Compounds(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Batches(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.BatchLabels(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Sensors(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Stimuli(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
property sstring → str

	Short string of the ID. This can be overridden.

	
class valarpy.model.CompoundLabels(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Features(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.LogFiles(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.MandosInfo(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.MandosObjects(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.MandosObjectLinks(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.MandosObjectTags(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.MandosPredicates(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.MandosRules(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.MandosRuleTags(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.Rois(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
property sstring → str

	Short string of the ID. This can be overridden.

	
class valarpy.model.RunTags(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.SauronSettings(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.SensorData(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.StimulusFrames(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.SubmissionParams(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.SubmissionRecords(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.TemplateStimulusFrames(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.TemplateTreatments(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.TemplateWells(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.WellFeatures(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.WellTreatments(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

	
class valarpy.model.BatchAnnotations(*args, **kwargs)

	A table model in Valar through Valarpy and peewee.
Provides functions in additional to the normal peewee functions.

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Valarpy

 		
 Setup

 		
 Tunnel into Valinor

 		
 Connect to Valar

 		
 Usage

 		
 Write access

 		
 Notes about tables

 		
 API Reference

 		
 valarpy

 		
 Package Contents

