
valarpy
Release 3.0.0

[, ', D, o, u, g, l, a, s, , M, y, e, r, s, -, T, u, r, n, b, u, l, l, ',]

Aug 11, 2022

CONTENTS

1 Setup 1

2 Usage 3

3 Notes about tables 5

4 API Reference 7

Python Module Index 9

Index 11

i

ii

CHAPTER

ONE

SETUP

First, install valarpy with just pip install valarpy. Note that if you are using sauronlab, you only need to install
sauronlab.

1.1 Tunnel into Valinor

Valarpy connects to Valar through an SSH tunnel; the database is not accessible remotely. There are two modes of
connection: Valarpy can either use an existing SSH tunnel or create its own.

Replacing 53419 with a number of your choosing, The port can’t be anything. It needs to be between 1025 and 65535,
and I recommend 49152–65535.

create the tunnel using:

ssh -L 53419:localhost:3306 valinor.ucsf.edu

Note that after running it your shell is now on Valinor.

You will need to leave this tunnel open while connecting to Valar. As long the terminal window connection is open,
you can access valar through your notebooks.

You can of course alias in your ~/.commonrc. Adding these lines will provide a valinor-tunnel alias:

export valinor_tunnel_port=53419
alias valinor-tunnel='ssh -L ${valinor_tunnel_port}:localhost:3306 valinor.ucsf.edu'

1.2 Connect to Valar

You will connect to Valar via that tunnel. An example configuration file is provided in the readme. I recommend
downloading it to $HOME/.sauronlab/connection.json. You’ll need to fill in the username and password for
the database connection. Although the database users are provided for safety (no write access by default) rather than
security, do not put a username and/or password anywhere that’s web-accessible (including GitHub).

1

https://github.com/dmyersturnbull/sauronlab

valarpy, Release 3.0.0

2 Chapter 1. Setup

CHAPTER

TWO

USAGE

Valarpy is an ORM for Valar based on Peewee. Here is how to initiate a new (read-only) connection.

import valarpy
with valarpy.opened() as model:

print(list(model.Refs.select()))

2.1 Write access

If your database username provides privileges for INSERT, UPDATE, or DELETE, you can run those queries via valarpy.
Because the vast majority of access does not require modifying the database – and mistakes can be catastrophic and
require reloading from a nightly backup – you must call enable_write().

Warning: Although valarpy is mostly thread-safe when using atomic transactions, it uses a global write-access
flag. That means that if you call enable_write (see below), all code can write, even if it called valarpy.
opened() separately.

You should use transactions and/or savepoints. In the following code, an atomic transaction is started, and the trans-
action is committed when the context manager closes. If an exception is raised within the transaction block, it will be
automatically rolled back on exit.

import valarpy
with valarpy.opened() as model:

model.conn.backend.enable_write()
with model.atomic():

ref = Refs.fetch(1)
ref.name = "modified-name"
ref.save()

transaction is now committed

If you nest atomic() calls, the nested call(s) will create savepoints rather than initiate new transactions. If a transaction
fails in the nested block, it will be rolled back to the savepoint:

import valarpy
with valarpy.opened() as model:

enable write access
model.conn.backend.enable_write()
This starts a transaction:

(continues on next page)

3

https://en.wikipedia.org/wiki/Object%E2%80%93relational_mapping
https://github.com/coleifer/peewee
https://mariadb.com/kb/en/start-transaction/
https://mariadb.com/kb/en/savepoint/

valarpy, Release 3.0.0

(continued from previous page)

with model.conn.atomic():
ref = Refs.fetch(1)
ref.name = "improved-name"
ref.version = "version 2"
try:

This just creates a savepoint
with model.conn.atomic():

ref.name = "name modified again"
ref.save()
raise ValueError("Fail!")

savepoint exits
except:

print("Rolling back to checkpoint")
prints "name=improved-name, version="version 2"
print(f"name={ref.name}, version={ref.version}")

transaction is now committed

You would never nest atomic calls in a single function, but you might call a function that also calls atomic. There is a
method analogous to atomic called rolling_back. This will roll back to the transaction or savepoint when the block
closes, whether or not an exception was called. This is especially useful when writing tests. Finally, model.atomic()
and model.rolling_back() both yield a Transaction object that has several methods, including .commit() and
.rollback(). In general, you would not want to call these directly, but you can.

4 Chapter 2. Usage

CHAPTER

THREE

NOTES ABOUT TABLES

Assay frames and features (such as MI) are stored as MySQL binary blobs.

Each frame in assay_frames is represented as a single big-endian unsigned byte. To convert back, use utils.
blob_to_byte_array(blob), where blob is the Python bytes object returned directly from the database.

Each value in well_features (each value is a frame for features like MI) is represented as 4 consecutive bytes that
constitute a single big-endian unsigned float (IEEE 754 binary32). Use utils.blob_to_float_array(blob) to
convert back.

There shouldn’t be a need to insert these data from Python, so there’s no way to convert in the forwards direction.

5

valarpy, Release 3.0.0

6 Chapter 3. Notes about tables

CHAPTER

FOUR

API REFERENCE

This page contains auto-generated API reference documentation1.

4.1 valarpy

Project metadata and convenience functions.

4.1.1 Package Contents

valarpy.new_model()

Shorthand for importing model. You should have a connection open.

Returns
The model module

valarpy.opened(config: Union[None, str, pathlib.Path, List[Union[str, pathlib.Path, None]], Mapping[str,
Union[str, int]]] = None)

Context manager. Opens a connection and returns the model. Closes the connection when the generator exits.

Parameters
config – Passed to Valar.__init__

Yields
The model module, with an attached .conn of type Valar

valarpy.valarpy_info()→ Generator[str, None, None]
Gets lines describing valarpy metadata and database row counts. Useful for verifying that the schema matches
the valarpy model, and for printing info.

Yields
Lines of free text

Raises
InterfaceError – On some connection and schema mismatch errors

Python code to talk to Valar. There is more documentation available in that readme.

1 Created with sphinx-autoapi

7

https://github.com/dmyersturnbull/valar
https://pypi.org/project/valarpy/
https://github.com/readthedocs/sphinx-autoapi

valarpy, Release 3.0.0

8 Chapter 4. API Reference

PYTHON MODULE INDEX

v
valarpy, 7

9

valarpy, Release 3.0.0

10 Python Module Index

INDEX

M
module

valarpy, 7

N
new_model() (in module valarpy), 7

O
opened() (in module valarpy), 7

V
valarpy
module, 7

valarpy_info() (in module valarpy), 7

11

	Setup
	Tunnel into Valinor
	Connect to Valar

	Usage
	Write access

	Notes about tables
	API Reference
	valarpy
	Package Contents

	Python Module Index
	Index

